The Preparation and Properties of Cobalt(III) Phosphine Complexes

Containing Nitrite and Acetylacetonate Ions

Satoru Hayakawa, Hiroaki Nishikawa, Kazuo Kashiwabara,** and Muraji Shibata*

Department of Chemistry, Faculty of Science, Kanazawa University, Kanazawa 920 (Received April 10, 1981)

Synopsis. Two complexes, $[Co(NO_2)(acac)_2(P)]$ -(acac=acetylacetonate ion, $P=PBu_3$, PBu_2Ph , PMe_2Ph , and $PMePh_2$) and $[Co(NO_2)_2(acac)(PMe_2Ph)_2]$, were prepared by a reaction between $Na[Co(NO_2)_2(acac)_2]$ and phosphines. The geometrical structures were determined on the basis of the 1H NMR, electronic, and IR spectra. A $cis(NO_2, P)$ configuration was assigned to $[Co(NO_2)(acac)_2(P)]$, and a trans(P,P) configuration, to $[Co(NO_2)_2(acac)(P)_2]$.

There have been a few cobalt(III) phosphine complexes among the so-called Werner-type complexes.¹⁾ The coordination of phosphine groups to a cobalt(III) ion may be affected by the kinds of other ligands coexisting in the complex. The unidentate phosphine complexes of cobalt(III) thus far prepared have been those with dimethylglyoximate,²⁾ acetylacetonate,³⁾ cyanide,^{4,5)} and halide⁶⁾ ions. Other types are, however, required to extend the study of the chemistry of cobalt-(III) phosphine complexes. This note will be concerned with the preparation and properties of cobalt-(III) phosphine complexes containing nitrite and acetylacetonate ions.

Experimental

The phosphines were prepared according to the procedures described previously,⁷⁾ and handled under a nitrogen atmosphere until they formed cobalt(III) complexes. The electronic spectra were measured with a Hitachi 139 spectrophotometer, the ¹H NMR spectra, with a JEOL C-60 H spectrometer in CDCl₃, using tetramethylsilane as the internal reference, and the IR spectra, with a JASCO DS-301 spectrometer.

Preparation. Nitrobis (acetylacetonato) tributylphosphinecobalt-Tributylphosphine(PBu₃) (4 cm³, 12 mmol) was added to Na[Co(NO₂)₂(acac)₂]⁸⁾ (4 g, 10 mmol) in a mixture (200 cm³) of benzene and ethanol (4:1), after which the solution was stirred at 50 °C for 5 h. The resulting red-brown solution was evaporated under reduced pressure to dryness. The residue was extracted with a small amount of benzene, which was then chromatographed with a column $(\phi 1.5 \times 30 \text{ cm})$ of alumina, using a mixture of benzene and acetone (6:1) as the eluent. Red-brown crystals were obtained by concentrating the first main, red-brown eluate and by adding a proper amount of hexane. Found: C, 52.10; H, 8.54; N, 3.05%. Calcd for [Co(NO₂)(acac)₂-(PBu₃)]: C, 52.31; H, 8.12; N, 2.77%. The materials remaining at the top of the column were not characterized.

Nitrobis (acetylacetonato) dibutylphenylphosphinecobalt (III): This complex was prepared by means of a reaction between Na[Co(NO₂)₂(acac)₂] and dibutylphenylphosphine (PBu₂Ph) in a mixture of benzene and ethanol (4:1) by a method similar to that used for the PBu₃ complex. Found: C, 54.64; H, 7.15; N, 2.66%. Calcd for [Co(NO₂)(acac)₂-(PBu₂Ph)]: C, 54.86; H, 7.10; N, 2.67%.

 $Nitrobis (a cetylace to nato) \ dimethyl phenyl phosphine cobalt (III):$

mixture of Na[Co(NO₂)₂(acac)₂] (3 g, 9 mmol) and dimethylphenylphosphine(PMe₂Ph) (1 cm³, 9 mmol) in benzene (150 cm³) was stirred at room temperature for 48 h. The resulting solution was then subjected to procedures similar to those used for the PBu₃ complex except for the use of a mixture of benzene and acetone (15:1) as the eluent. Found: C, 48.37; H, 5.71; N, 2.96%. Calcd for [Co(NO₂)-(acac)₂(PMe₂Ph)]: C, 48.99; H, 5.71; N, 3.17%.

Nitrobis (acetylacetonato) methyldiphenylphosphinecobalt (III): A mixture of Na[Co(NO₂)₂(acac)₂] (3 g, 9 mmol) and methyldiphenylphosphine (PMePh₂) (3 cm³, 15 mmol) in benzene (150 cm³) was stirred at room temperature for 48 h. The subsequent procedures were similar to those used for the PBu₃ complex. Found: C, 54.62; H, 5.57; N, 2.69%. Calcd for [Co(NO₂)(acac)₂(PMePh₂)]: C, 54.88; H, 5.41; N, 2.78%.

Dinitroacetylacetonatobis (dimethylphenylphosphine) cobalt (III): A mixture of Na[Co(NO₂)₂(acac)₂] (3 g, 9 mmol) and PMe₂Ph (1.3 cm³, 12 mmol) in ethanol (100 cm³) was stirred at 50 °C for 2 h. The resulting red-brown solution was evaporated under reduced pressure to dryness. The residue was extracted with benzene, which was then chromatographed in a way similar to that used for the PBu₃ complex. The eluate was concentrated under reduced pressure to a small volume and then allowed to stand in a refrigerator to yield red-brown crystals. The presence of [Co(NO₂)(acac)₂-(PMe₂Ph)] in the solution was confirmed by the ¹H NMR spectrum. Found: C, 48.16; H, 5.64; N, 4.87%. Calcd for [Co(NO₂)₂(acac)(PMe₂Ph)₂]: C, 47.92; H, 5.55; N, 5.32%.

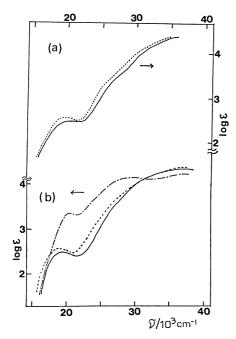
The yields for the above-mentioned complexes were 10—20%.

Results and Discussion

The facile substitution or solvolysis of a nitrite ion in Na[Co(NO₂)₂(acac)₂] has been known and utilized for preparing other bis(acetylacetonato)cobalt(III) derivatives, such as [Co(NO₂)(acac)₂L].^{8.9} Tertiary monophosphines can also be expected to react with the dinitro complex in a similar manner. Trialkylor alkylarylphosphines react readily with the dinitro complex and yield complexes of the [Co(NO₂)(acac)₂-(P)] type, but triphenylphosphine does not yield the corresponding complex.

 $[\mathrm{Co}(\mathrm{NO_2})_2(\mathrm{acac})(\mathrm{PMe_2Ph})_2]$ was obtained from a reaction mixture of $\mathrm{PMe_2Ph}$ and $\mathrm{Na}[\mathrm{Co}(\mathrm{NO_2})_2(\mathrm{acac})_2]$ in ethanol, $[\mathrm{Co}(\mathrm{NO_2})(\mathrm{acac})_2(\mathrm{PMe_2Ph})]$ also being involved in the solution. Free $\mathrm{PMe_2Ph}$ and the liberated $\mathrm{NO_2}^-$ might attack the $[\mathrm{Co}(\mathrm{NO_2})(\mathrm{acac})_2-(\mathrm{PMe_2Ph})]$ first formed, thus yielding $[\mathrm{Co}(\mathrm{NO_2})_2(\mathrm{acac})-(\mathrm{PMe_2Ph})_2]$.

A nitrite ion can coordinate to a metal ion through a nitrogen or oxygen atom. None of the complexes prepared in this study show the N-O stretching in the region of 1000—1100 cm⁻¹, indicating the coordination through the nitrogen atom.


There are two geometrical isomers for the [Co-

^{**} Present address: Department of Chemistry, Faculty of Science, Nagoya University, Nagoya 464.

TARTE	1	ELECTRONIC	(AR)	AND	NMR	SDECTRAL T	N TT A
IABLE	1.	ELECTRONIC	(AD)	AND	TATAL	SPECIKAL I	DATA

	AB		NMR, $\delta (J/Hz)^{a}$	
	$\bar{\nu}/10^3 \mathrm{cm}^{-1}(\log \varepsilon)$	-CH ₃ (acac)	-CH	P-CH ₃
[Co(NO ₂)(acac) ₂ (PBu ₂ Ph)]	19.8 (2.54)	1.66 1.77 1.97 2.18	5.00 5.44	· · · · · · · · · · · · · · · · · · ·
$[\mathrm{Co}(\mathrm{NO_2})(\mathrm{acac})_2(\mathrm{PBu_3})]$	20.6 (2.50)	1.94 ^{b)} 2.02 2.25	5.40 5.52	
[Co(NO ₂)(acac) ₂ (PMePh ₂)]	19.2(2,56)	1.61 1.86 2.04 2.24	5.03 5.57	2.00 (d, 13)
[Co(NO ₂)(acac) ₂ (PMe ₂ Ph)]	19.7(2.50)	1.51 1.86 2.01 2.25	5.02 5.46	1.76 (d, 13)
$[\mathrm{Co(NO_2)_2(acac)(PMe_2Ph)_2}]$	20.8 (3.34)	1.26	4.67	1.90(t, 8)
ris-Na[Co(NO ₂) ₂ (acac) ₂] ⁹⁾	19.2(2.25)	2.10 2.20	5.75	
rans-Na[Co(NO ₂) ₂ (acac) ₂] ^{8,9)}	19.3(2.24)	2.18	5.79	

a) d; doublet, t; triplet, the J value refers to the interval of the two outer peaks. b) The peak intensity is twice that of the others because of accidental degeneracy.

 $\begin{array}{llll} \mbox{Fig. 1. Absorption spectra in dichloromethane.} \\ (a) : & \left[\mbox{Co(NO}_2) (\mbox{acac})_2 (\mbox{PBu}_2 \mbox{Ph}) \right] & (----), & \left[\mbox{Co(NO}_2) (\mbox{acac})_2 (\mbox{PBu}_3) \right] & (----), & \left[\mbox{Co(NO}_2) (\mbox{acac})_2 (\mbox{PMePh}) \right] \\ (----), & \left[\mbox{Co(NO}_2)_2 (\mbox{acac}) (\mbox{PMe}_2 \mbox{Ph})_2 \right] & (-------). \end{array}$

(NO₂)(acac)₂(P)] complex. The ¹H NMR spectra can distinguish a cis or trans configuration. The spectral data are summarized in the table, together with those of the related compounds. All complexes of this type can be assigned to a cis configuration on the basis of the number of methyl and methine signals of the coordinated acetylacetonate. One of the methine peaks in each PBu₂Ph, PMe₂Ph, and PMePh₂ complex is shielded by a phenyl group on the phosphorus atom and is observed at high magnetic fields, 5.00—5.03 ppm.¹⁰⁾ The absorption spectra exhibit a broad first-absorption band around 20000 cm⁻¹ (see Fig. 1). The replacement of the alkyl groups on a phosphorus atom by a phenyl group causes the red shift and increases the intensity of the first absorption band. The ligand-field strength of these phosphines is nearly identical with that of a nitro ligand, or slightly stronger.

There are three geometrical isomers for [Co(NO₂)₂-

(acac) (PMe₂Ph)₂]. The ¹H NMR spectrum shows one kind of methyl signal for the acetylacetonato ligand, indicating a trans(P,P) or trans(N,N) configuration. The remarkable high-field shift of the methine signal strongly suggests a trans(P,P) configuration where a phenyl group of the PMe₂Ph molecule is located over the acetylacetonate ring and shields the methine proton, causing it to resonate at a higher magnetic field.¹⁰ The electronic and IR spectra also suggest a trans(P,P) configuration. The first absorption band shows a strong intensity (log ε =3.34), which is characteristic of the trans(P,P) arrangement of two phosphorus donor atoms.¹¹ The IR spectrum shows sharp peaks at 821 and 825 cm⁻¹ attributable to the NO₂- bending mode, the presence of two bands suggesting a cis configuration of two nitrite ions.¹²)

References

- 1) "Transition Metal Complexes Containing Phosphorus, Arsenic and Antimony Ligands," ed by C. A. McAuliffe, Macmillan Press, London (1973); C. A. McAuliffe and W. Levason, "Phosphine, Arsine and Stibine Complexes of the Transition Elements," Elsevier, Amsterdam (1979).
- 2) G. N. Schrauzer and J. Kohnle, *Chem. Ber.*, **97**, 3056 (1964); W. C. Trogler and L. G. Marzilli, *Inorg. Chem.*, **14**, 2942 (1975); R. C. Stewart and L. G. Marzilli, *ibid.*, **16**, 424 (1977).
- 3) H. Nishikawa, K. Konya, and M. Shibata, *Bull. Chem. Soc. Jpn.*, **41**, 1492 (1968).
- 4) K. Watanabe, H. Nishikawa, and M. Shibata, Bull. Chem. Soc. Jpn., 42, 1150 (1969).
- 5) N. Maki and K. Ohshima, Bull. Chem. Soc. Jpn., 43, 3970 (1970).
- 6) K. A. Jensen, B. Nygaard, and C. Th. Pedersen, *Acta Chem. Scand.*, **17**, 1126 (1963); O. Stelzer, *Chem. Ber.*, **107**, 2329 (1974).
- 7) L. Maier, "Organic Phosphorus Compounds," ed by L. Maier and G. M. Kosolapott, Wiley, New York (1972), Vol. 1, p. 1.
- 8) L. J. Boucher and J. C. Bailar, Jr., J. Inorg. Nucl. Chem., 27, 1093 (1965).
- 9) B. P. Cotsoradis and R. D. Archer, *Inorg. Chem.*, **6**, 800 (1967).
- 10) K. Kashiwabara, I. Kinoshita, T. Ito, and J. Fujita, Bull. Chem. Soc. Jpn., 54, 725 (1981).
- 11) K. Kashiwabara, K. Katoh, J. Fujita, H. Nishikawa, and M. Shibata, Chem. Lett., 1981, 575.
- 12) B. M. Gatahouse, *J. Inorg. Nucl. Chem.*, **8**, 79 (1958); I. Nakagawa and T. Shimanouchi, *Spectrochim. Acta*, **23**, 2099 (1967).